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SIMPLIFIED TURBULENT BOUNDARY LAYER COMPUTATION OF SOME 
DIVERGENT INTERNAL FLOWS 

R. Askovic 

Laboratoire de Mécanique et d’Energétique,Université de Valenciennes 
Le Mont Houy, 59313 Valenciennes Cedex 9, France 

1. Introduction 
Models frequently used for the hydraulic machines are composed of a disc and two perpen-

dicular radial plates in the flow produced either by a linear source (Fig. 1a) or by a linear pit. Or, 
neglecting, in the first approximation, the interaction between the disc and two plates, in this case 
two boundary layers can be considered separately [8]: the planar boundary layer between two di-
vergent (or convergent) plates and the axisymmetric boundary layer on the disc (in the presence of 
a funnel above the disc (Fig. 1b) to vary slowing down or acceleration of the flow). 

To calculate the flows of this type (Figures 1a and 1b), we are going to develop herein a 
simplified method by using a new variant of the phenomenologic semi-empiric turbulent 
boundary-layer theory (Novozilov [1]) that is founded on the analogy with the rheologic power-
laws largely utilized in the study of non-Newtonian non-linear flows and on the use of the 
Karman turbulence model. It is to note also that the viscous sublayer is neglected as well as the 
layer situated over the zone for which the universal logarithmic law is usually used. 

2. Planar (or axisymmetric) turbulent boundary layer 
The equations of the planar turbulent boundary layer can be written in the following form: 

,
e e

u u 1u v u u
x y y

                                                                  (1)
u v 0
x y

∂ ∂ ∂τ + = + ∂ ∂ ρ ∂ 
∂ ∂ + =
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where (x, y) – usual orthogonal curved coordinates, (u, v) –velocity components at (x, y) in the 
boundary layer, eu (x) – external velocity out of the frontier of the boundary layer, 

t
u uu 'v '
y y
∂ ∂

τ = µ −ρ = µ + τ
∂ ∂

– global turbulent stress where the viscous part is neglected. 
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Fig. 1. Model of divergent rectangular channel (a), axisymmetrical diffusor (b)  

and meridian line shapes (c). 
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Due to the rheological power law and the Prandtl turbulence model chosen herein, it 
results that: 

n
n

1 uk T
y
∂

τ = ν
ρ ∂

 ,                                                                     (2) 

2y uT .
y
∂

=
ν ∂

                                                                          (3) 

The system of equations (1) must be resolved for the following boundary conditions: 

 

e

uu v 0,   ,   for  y = 0
y                                                                   (4)

u u (x),   0,   for  y (x)

∂ = = →∞ ∂ 
= τ = = δ 

 

as well as for the next initial condition: 
       0u u (y)=    for   0x x=  ,                                                    (5) 

where  (x)δ   is the thickness of the boundary layer. 
In order to calculate the turbulent boundary layer, we used in practice most often an 

integral relation obtained from the system of equations (1), called the momentum equation, in 
the following form: 

e 22
f

e

u 'd 1(2 H) c
dx u 2

δδ
+ + =                                                    (6) 

where 
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                    (7) 

By analogy with the Novozilov’s procedure [1], the practical approximate method of com-
puting the turbulent boundary layer proposed herein consists in the following steps to be done: 

– At first, for a given distribution of the external velocity eu (x) , a Riccati like differential 
equation: 

,
, 2 2 e e
e3

ee

u udz 23,163 (u ) z 2,097 z 0,063
dx uu

ν
− + =

ν
                                  (8) 

is to be integrated with a prescribed initial condition of 2δ  for 1x x :=  

4 3e 2
1

u
z(x) ( ) z

δ
= =

ν
   for   1x x .=                                                   (9) 

– After finding z(x), determine the momentum thickness by using (10): 

   3 4
2

e
(x) z ,

u
ν

δ =                                                                     (10) 

as well as the parameter Q(x), given by: 

   ,
e2

e
Q(x) u z(x).

u
ν

=                                                                 (11) 

– The next step is to determine the functions E(Q), G(Q) and H(Q), defined as follows: 
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[ ] 1E(Q) (2 n) 1 H(Q) Q G(Q) 2Q,
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 = − + − + 
 

                                 (12) 
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                                                     (13) 

1

2
H(Q) .

δ
=
δ

                                                               (14) 

It is to be noticed that the function E(Q) depends on n, not only explicitely, but also 
through functions G(Q) and H(Q), the forms of which depend on n and can be determined 
numerically. In this sense, it is possible to ascertain that for every particular value of n, there is 
“its proper formula” (12). In the particular case (n = 2/3, nk 0,55= ) and for the Prandtl 
turbulence model (3), we carried out detailed computations of the functions E(Q), G(Q) and 
H(Q) with approximate analytical expressions of the next forms: 

  

2

2 3

E(Q) 0.063 4.097Q 23.163Q

G(Q) 0.0938 2.1143Q 36.1035Q 984.7348Q
H(Q) 1.6529 2.17Q

= − + −
= + + + 
= − 

                        (15) 

– So, the formulas: 
H(x) = H(Q),    1 4

fc (x) z G(Q)−=                                                      (16) 
offer two particularly important characteristics of the turbulent boundary layer. 

– Finally, by using the well known simplest idea, it will be possible to calculate an 
improved approximation of the mean velocity in the turbulent boundary layer by (17): 

(1 2)(H 1)

e 2

u y H 1 ,
u H(H 1)

−
 −

=  δ + 
                                                      (17) 

where the functions 2 (x)δ  and H(x) are determined by the formulas (10) and (16). 
Applying the analogous procedure as above in the planar case, we can obtain also the 

practical approximate method for the axially symmetric turbulent boundary layer. The only 

difference appears in Eq. 8 where a new term 4 r z
3 r

′
 should be added at left side (r is the radius 

of the sections taken at right angles to the axes of revolution). 

3. Elementary case 

3.1. Planar turbulent boundary layer between two divergent surfaces. It is the question 
of two divergent surfaces (i.e. two radial plates for k = 1, Fig. 1a) in the flow produced by a 
linear source, so that the external velocity can be written in the form: 

k
e 0

xu (x) U (1 ) ,
L

−= +    x 0,≥    k 0.≥                                    (18) 

 
If we replace (18) into (8), then it results: 

2
k 2 2 1 ke

e

Rdz k x k x x23,163 (1 ) z 2,097 (1 ) z 0,063 (1 ) ,
dx LR L L L L L

− − −= + + + + +           (19) 
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where e 0R U L .= ν  First, we found the analytical solution of the Riccati differential equation 
(19), for every other values of k, except for: 

0,18139<k<1,46844,                                                         (20) 
in the form: 

2 ke
2

LR xz(x) (1 ) M(x) N(x),
L23,163k

−= + +                                         (21) 

w

w
1 1 (w 1) Cw(w 1)(L x)M(x) ,
2 L x 1 Cw(L x)

− − + +
=

+ + +
   1 k

e2
1 1,5485k xN(x) R (1 ) ,

L23,163k
−−

= +  

where the integration constant C, in accordance with the initial condition z(0) = 0, is the following: 

ww 3,097k 1C L ,
w(w 3,097k 1)

−− +
=

+ −
      with      2 1 2w (1 6,194k 3,75432k ) .= − +  

Then, for the values of k, situated into the interval (20), we found the solution in the form: 

0

0,02158 x LQ(x) 0,06685 ptg 23,163kp ln( ) ,
k C

 +
= − −  

 
                                 (22) 

1 2
2

0,00288 0,00046p ( 0,00175 ) ,
k k

= − + −   0
1 0,06685k 0,02158C Lexp( arctg ).

23,163kp kp
−

= −  

3.2. Turbulent boundary layer in an axisymmetric diffusor. In reality, it is the question 
of the flow produced by a linear source on a disc in the presence of a perpendicularly placed 
funnel (Fig. 1b). The equation of the meridian line of the funnel is: 

k 1
0

xy y (1 ) ,
R

−= +                                                               (23) 

where 0y y(0),=  x 0,≥  while the distributions of eu (x)  and r(x), for different values of the 
exponent k (Fig. 1c), are: 

k
e 0

xu (x) U (1 ) ,
R

−= +  r(x)=R + x ,                                               (24) 

where 0 eU u (0)=  and x 0.≥  
Repeating the analogous procedure as in §3.1, we determined the both functions z(x)  

and Q(x). 

4. Calculation of the global turbulent boundary layer characteristics 

After determining the functions z(x) and Q(x), we can calculate now all global boundary-
layer characteristics in accordance with the order of operations announced at §2. So, in the case of 
the planar diffusors, we are choosing herein k = 1, i.e. the case of two radial divergent plates 
(Fig. 1a). Or, while this value k = 1 is situated over the interval (20), then the solution is done by 
(22), with p=0,0258 and 0C =0,17L. Next, the relation (11) offers z(x), then the momentum thick-
ness 2 (x)δ  is obtained from (10). Afterwards, the calculation goes on in accordance with the or-
der of operations above-mentioned. The turbulent boundary layer characteristics, calculated in this 
way in the particular case 5

eR 5.10 ,=  are presented in Figs. 2 and 3. It will be particularly re-
marked that, the turbulent boundary layer separation (G(Q)=0) occurs nearly at x = 0,465L. It is to 
be noticed that in the analogous laminar case [3],  the separation point appeared at x = 0,161L. 
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Concerning the axisymmetric diffusors, we are choosing herein k=1, i.e., after (23) and 
(24), the case of an annular disc in the flow produced by a linear source (Fig. 1b). The turbulent 
boundary layer characteristics, calculated in a  similar way as above, in the particular case 

5
eR 5.10 ,=  are given by Figs. 2 and 3. The turbulent boundary layer separation (G(Q) = 0) 

appears at x = 0,6R, while in the analogous laminar case [3], the point of boundary layer 
separation occurred at x = 0,178R. 

5. Comparison with the other methods and models of turbulence 

Figure 4 shows our results [4] concerning the position of detachment points, together with 
the corresponding results obtained by two models of turbulence: CFD k RNG,− − ε −  
CFD k− − ε  by Rothe et al. [5], and UIM of Stanford University by Johnston [6] as well as the 
experimental results of Ashjaee et al. [7] It can be remarked that the approximate method 
predicts the detachment point with the accuracy of 6 % approximately for the angles 10° to 18°. 

6. Remarks on some (divergent) external flows 

The simplified practical method is applicable for both internal and external flow 
problems. So, an approximate procedure is proposed to evaluate the evolution of the velocity 
profile in a neighborhood of the separation point of the turbulent boundary layer in the case of 
the Prandtl turbulence model [8]. The Fig. 5 gives the calculated velocity profile for one section 
after the separation point compared to the experimental results (presented by the black points) 
of Mises in the case of the ident 3800 [2], while the Fig. 6 shows the calculated velocity profile 
by the developed simplified method quite nearly the wall in the same case. 

7. Conclusion 

By beginning with the integral momentum equation and with the analogy with the 
rheological power law, which is effectivelly used to study flow of non-Newtonian liquids with 
nonlinear viscosities, a simple practical method is obtained for an approximate computation of 
both turbulent boundary layers, planar and axisymmetric, in the case of the Prandtl model of 
turbulence, where for the process ending it is necessary to know only two empirical constants 
(for example, n = 2/3 and nk 0,55).= The developed method is applicable to some internal 
flows, such as a divergent rectangular channel (Fig. 1a) or an axisymmetrical diffusor (Fig. 1b), 

Fig. 4. Comparison of the 
detachment point. 

Fig. 2. Variation of adimensional 
momentum thickness. 

Fig. 3. Variation of skin-
friction  adimensional 

coefficient. 
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as well as other planar or axisymmetrical, rectilinear or curvilinear, diffusors [4]. So, the Fig. 7 
summarizes some obtained results [8] in the case of the divergent rectangular channel for 

5
eR 5.10 .=  From there, the turbulent boundary layer separation appears earlier on the side wall 

(dotted line) than on the bottom of the channel, independently of the slowing down of the flow, 
which is in accordance with the same tendency, well-known before [3], in the analogous 
laminar case. 

The method gives relatively good results for all global characteristics 2 ,δ  H and fc  of the 
turbulent boundary layer in both, internal and external, problems. As expected, the velocity 
profiles are of the lower quality, relatively schematized. In return for this drawback, the method 
enables a satisfactory evolution evaluation of the flow velocity profile just upstream and 
downstream the separation point of the turbulent boundary layer (Figs. 5 and 6). Finally, it can 
be noted that we did also some comparaisons between the actual practical simplified method 
and the corresponding experimental results  [7] with satisfactory concordance. 
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Fig. 5. Calculated velocity
profile  compared to the 

experimental results. 

Fig. 7.  Turbulent  boundary 
layer separation on the side 
wall  and on the  bottom of  

the channel. 

Fig. 6. Calculated velocity 
profile nearly to the wall. 
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